Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145684

RESUMO

Modulation of drug transporter activity at mucosal sites of HIV-1 transmission may be exploited to optimize retention of therapeutic antiretroviral drug concentrations at target submucosal CD4+ T cells. Previously, we showed that darunavir was a substrate for the P-glycoprotein efflux drug transporter in colorectal mucosa. Equivalent studies in the cervicovaginal epithelium have not been reported. Here, we describe the development of a physiologically relevant model to investigate the permeability of antiretroviral drugs across the vaginal epithelium. Barrier properties of the HEC-1A human endometrial epithelial cell line were determined, in a dual chamber model, by measurement of transepithelial electrical resistance, immunofluorescent staining of tight junctions and bi-directional paracellular permeability of mannitol. We then applied this model to investigate the permeability of tenofovir, darunavir and dapivirine. Efflux ratios indicated that the permeability of each drug was transporter-independent in this model. Reduction of pH to physiological levels in the apical compartment increased absorptive transfer of darunavir, an effect that was reversed by inhibition of MRP efflux transport via MK571. Thus, low pH may increase the transfer of darunavir across the epithelial barrier via increased MRP transporter activity. In a previous in vivo study in the macaque model, we demonstrated increased MRP2 expression following intravaginal stimulation with darunavir which may further increase drug uptake. Stimulation with inflammatory modulators had no effect on drug permeability across HEC-1A barrier epithelium but, in the VK2/E6E7 vaginal cell line, increased expression of both efflux and uptake drug transporters which may influence darunavir disposition.

2.
Xenobiotica ; 48(9): 882-890, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28868965

RESUMO

1. The UDP-glucuronosyltransferase (UGT) enzymes are important in the metabolism, elimination and detoxification of many xenobiotics and endogenous compounds. As extrapolation of in vitro kinetics of drug metabolizing enzymes to predict in vivo clearance rates becomes more sophisticated, it is important to ensure proper optimization of enzyme assays. The luminal location of the enzyme active site (i.e. latency), and the complexity of UGT kinetics, results in consistent under-prediction of clearance of drugs metabolized by glucuronidation. 2. We examined inhibition of UGT activity in alamethicin-disrupted human liver microsomes (HLM) by uridine diphosphate (UDP), a UGT reaction product, and its reversal by Mg2+ ions. We also determined whether UDP-sugars other than the co-substrate UDP-glucuronic acid (UDP-GlcA) affected glucuronidation. 3. We show that other UDP-sugars do not significantly influence glucuronidation. We also demonstrate that UDP inhibits HLM UGT activity and that this is reversed by including Mg2+ in the assay. The Mg2+ effect can be offset using EDTA, and is dependent on the concentration of UDP-GlcA in the assay. 4. We propose that formation of a Mg2+-UDP complex prevents UDP from affecting the enzyme. Our results suggest that 5 mM UDP-GlcA and 10 mM Mg2+ be used for UGT assays in fully disrupted HLM.


Assuntos
Glucuronosiltransferase/metabolismo , Magnésio/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Açúcares de Uridina Difosfato/farmacologia , Difosfato de Uridina/farmacologia , Alameticina/farmacologia , Humanos , Microssomos Hepáticos/metabolismo
3.
J Biochem Mol Toxicol ; 31(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28346733

RESUMO

Dihydronicotinamide riboside:quinone oxidoreductase (NQO2) is an enzyme that performs reduction reactions involved in antioxidant defense. We hypothesized that NQO2 hepatic drug clearance would develop in children over time, similar to NQO1. Using human liver cytosol (n = 117), the effects of age, sex, ethnicity, and weight on NQO2 expression and activity were probed. No significant correlations were observed. Biochemical activity of NQO2 was as high at birth as in adults (0.23 ± 0.04 nmol/min/mg protein, mean ± SEM, range 0-1.83). In contrast, modeled hepatic clearance through the NQO2 pathway was up to 10% of adult levels at birth, reaching predicted adult levels (0.3 ± 0.03 L/h) at 14 years of age. Comparisons between NQO1 and NQO2 in the same livers showed that neither protein (P = 0.32) nor activity (P = 0.23) correlated, confirming both orthologs are independently regulated. Because hepatic clearance through NQO2 does not mature until teenage years, compounds detoxified by this enzyme may be more deleterious in children.


Assuntos
Envelhecimento/metabolismo , Fígado/enzimologia , Quinona Redutases/metabolismo , Feminino , Humanos , Masculino , NAD(P)H Desidrogenase (Quinona)/metabolismo
4.
Pharmaceutics ; 9(1)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218636

RESUMO

The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1 mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18-69 years), and in S9 from randomly acquired samples (n = 87, 7 days-87 years). ABCB1 levels did not differ significantly throughout individual livers and showed 4.4-fold protein variation between subjects. Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001), with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1 is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for toxicity and response to therapy in this special population.

5.
Drug Metab Dispos ; 44(7): 967-74, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26856346

RESUMO

The NADPH dehydrogenase quinone oxido-reductase 1 (NQO1) enzyme is an antioxidant and metabolic enzyme that performs two electron reduction of quinones and other chemicals. Based on the physiologic role(s) of NQO1, we hypothesized that expression and activity of this enzyme would vary with age and other demographic variables. Cytosols from 117 archived human livers were investigated for changes in NQO1 with age, sex, obesity, and ethnicity. Protein expression but not activity of NQO1 was weakly negatively correlated with age (Spearman r = -0.2, P = 0.03). No sex differences were observed for either protein expression or activity and for ethnicity; Caucasians had greater NQO1 activity than Asians (P < 0.05). Overweight children had statistically significantly higher NQO1 activity as compared with ideal weight children (P < 0.05) although this difference was not observed in adults. These findings establish that NQO1 is approximately as active in children as adults. However, modeled NQO1 clearance (both allometric and physiologically based pharmacokinetics) predicted maturation at 23 to 26 years. This is almost certainly an overestimate, with error in the model resulting from a small sample size and inability to scale for age-related changes in hepatic cellularity and/or cytosolic protein content, and indicates a delay in reaching maximum clearance through the NQO1 pathway that is affected by physiologic development as much, or more than, biochemical development. Obesity may increase hepatic NQO1 activity in children, which is likely a protective mechanism in oxidative stress, but may also have significant implications for drug and chemical disposition in obese children.


Assuntos
2,6-Dicloroindofenol/farmacocinética , Envelhecimento/metabolismo , Fígado/enzimologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/etnologia , Povo Asiático , Criança , Pré-Escolar , Citosol/enzimologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Obesidade Infantil/enzimologia , Fatores Sexuais , Especificidade por Substrato , População Branca , Adulto Jovem
6.
Xenobiotica ; 46(6): 548-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26407213

RESUMO

1. The umbilical cord is a direct conduit to the fetus hence transporters could have roles in partitioning substances between the maternal-placental-fetal units. Here we determined the expression and localization of the ATP-Binding Cassette (ABC) transporters BCRP (ABCG2), P-gp (ABCB1) and MRP1 (ABCC1) in human umbilical cords. 2. The mRNA for BCRP and MRP1 was detected in 25/25 samples, but P-gp was detected in only 5/25. ABC transporter mRNA expression relative to 18S was 25.6 ± 0.3, 26.5 ± 0.6 and 22.2 ± 0.2 cycles for BCRP, MRP1 and P-gp respectively. 3. Using a subset of 10 umbilical cords, BCRP protein was present in all samples (immunoblot) with positive correlation between mRNA and proteins (p = 0.07, r = 0.62) and between immunoblotting and immunohistochemistry (IHC) (p = 0.03, r = 0.67). P-gp protein was observed in 4/10 samples by both immunoblot and IHC, with no correlation between mRNA and protein (p = 0.45, r = 0.55) or immunoblotting and IHC (p = 0.2, r = 0.72), likely due to small sample size. MRP1 protein was not observed. 4. Localization of BCRP and P-gp proteins was to Wharton's jelly with no specific staining in arterial or venous endothelia. 5. Understanding ABC transporter expression in the umbilical cord may be useful for determining fetal exposures to xenobiotics if functional properties can be defined.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Cordão Umbilical/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Estudos de Coortes , Demografia , Feminino , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas de Neoplasias/genética , Gravidez
7.
Chem Biol Interact ; 242: 203-10, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26462791

RESUMO

The aim of this study was to characterize the ontogeny and variability of the BCRP (ABCG2) transporter in healthy human liver. Levels of BCRP mRNA and protein were determined with q-RT-PCR and western blot in a cohort of 87 human livers aged from 7 days to 87 years. A study of the regional expression of BCRP within adult livers was also performed in a nested cohort of 14 individuals with multiple samples per person collected from pre-selected sites. Levels of BCRP mRNA were not significantly different at any age, but protein levels for BCRP were lower in the elderly compared with adults (p < 0.001) and children (p < 0.05). The intra-liver levels of BCRP protein ranged approximately 6.5-fold and inter-liver BCRP protein varied 8.5-fold in the cohort. No differences in BCRP mRNA or protein were observed with sex or ethnicity, although higher levels of BCRP mRNA were observed in livers from overweight individuals (Body Mass Index ≥ 25-29.9) as compared to underweight or ideal weight individuals. There were no differences in the levels of BCRP mRNA or protein in different regions of the large lobe (n = 3 regions), small lobe (n = 3 regions), directly adjacent to the portal vein or directly adjacent to the common bile duct. This indicates that BCRP researchers can source tissue from all parts of the adult liver without artificial bias in their results. Lower BCRP protein expression in the elderly may be associated with compromised xeno- and endobiotic transport.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Envelhecimento/metabolismo , Fígado/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
8.
Expert Opin Drug Metab Toxicol ; 11(6): 949-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25797307

RESUMO

INTRODUCTION: The uridine diphosphate (UDP)-glucuronosyltransferase (UGT) superfamily of enzymes (EC 2.4.1.17) conjugates glucuronic acid to an aglycone substrate to make them more polar and readily excreted. In general, this reaction terminates the activities of chemicals, drugs and toxins, although occasionally a more active or toxic species is produced. AREAS COVERED: In addition to their well-known transcriptional responsiveness, UGTs are also regulated by posttranscriptional mechanisms. Here, the authors review these mechanisms, including latency, modulation of co-substrate accessibility and binding, dimerization and oligomerization, protein-protein interactions, allosteric inhibition and activation, posttranslational structural and functional modifications and developmental switching for UGTs. EXPERT OPINION: Posttranscriptional regulation of UGTs has traditionally received less attention than nuclear regulation, in part because mechanisms involving ribosomes and endoplasmic reticula are challenging to investigate. Most promising of the posttranscriptional mechanisms reviewed are likely to be effects on co-substrate (UDP-glucuronic acid) transport and availability and structure-function changes to UGT proteins through, for example, glycosylation and phosphorylation. Although classical biochemistry continues to illuminate many aspects of UGT function, advances in proteomics and structural biology are beginning to assist in the determination of posttranscriptional regulation mechanisms for UGTs.


Assuntos
Glucuronosiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Processamento Pós-Transcricional do RNA , Regulação Alostérica , Transporte Biológico , Retículo Endoplasmático/metabolismo , Glucuronosiltransferase/genética , Humanos , Preparações Farmacêuticas/metabolismo , Ligação Proteica
9.
J Proteome Res ; 13(2): 866-74, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24303842

RESUMO

The modulation of drug metabolism enzyme (DME) expression by therapeutic agents is a central mechanism of drug-drug interaction and should be assessed as early as possible in preclinical drug development. Direct measurement of DME levels is typically achieved by Western blotting, qPCR, or microarray, but these techniques have their limitations; antibody cross-reactivity among highly homologous subfamilies creates ambiguity, while discordance between mRNA and protein expression undermines observations. The aim of this study was to design a simple targeted workflow by combining in vivo SILAC and label-free proteomics approaches for quantification of DMEs in mouse liver, facilitating a rapid and comprehensive evaluation of metabolic potential at the protein level. A total of 197 peptides, representing 51 Phase I and Phase II DMEs, were quantified by LC-MS/MS using targeted high resolution single ion monitoring (tHR/SIM) with a defined mass-to-charge and retention time window for each peptide. In a constitutive androstane receptor (Car) activated mouse model, comparison of tHR/SIM-in vivo SILAC with Western blotting for analysis of the expression of cytochromes P450 was favorable, with agreement in fold-change values between methods. The tHR/SIM-in vivo SILAC approach therefore permits the robust analysis of multiple DME in a single protein sample, with clear utility for the assessment of the drug-drug interaction potential of candidate therapeutic compounds.


Assuntos
Enzimas/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Western Blotting , Cromatografia Líquida , Receptor Constitutivo de Androstano , Camundongos , Espectrometria de Massas em Tandem
10.
Drug Metab Dispos ; 37(11): 2255-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19679676

RESUMO

Expression levels of the major human sulfotransferases (SULTs) involved in xenobiotic detoxification in a range of human tissues (i.e., SULT "pies") are not available in a form allowing comparison between tissues and individuals. Here we have determined, by quantitative immunoblotting, expression levels for the five principal human SULTs-SULT1A1, SULT1A3/4, SULT1B1, SULT1E1, and SULT2A1-and determined the kinetic properties toward probe substrates, where available, for these enzymes in cytosol samples from a bank of adult human liver, small intestine, kidney, and lung. We produced new isoform-selective antibodies against SULT1B1 and SULT2A1, which were used alongside antibodies against SULT1A3 and SULT1A1 previously produced in our laboratory or available commercially (SULT1E1). Expression levels were derived using purified recombinant enzymes to construct standard curves for each individual isoform and immunoblot. Substantial intertissue and interindividual differences in expression were observed. SULT1A1 was the major enzyme (>50% of total, range 420-4900 ng/mg cytosol protein) in the liver, followed by SULT2A1, SULT1B1, and SULT1E1. SULT1A3 was completely absent from this tissue. In contrast, the small intestine contained the largest overall amount of SULT of any of the tissues, with SULT1B1 the major enzyme (36%), closely followed by SULT1A3 (31%), and SULT1A1, SULT1E1, and SULT2A1 more minor forms (19, 8, and 6% of total, respectively). The kidney and lung contained low levels of SULT. We provide a unique data set that will add value to the study of the role and contribution of sulfation to drug and xenobiotic metabolism in humans.


Assuntos
Regulação Enzimológica da Expressão Gênica , Sulfotransferases/análise , Sulfotransferases/biossíntese , Adulto , Idoso , Ativação Enzimática/fisiologia , Feminino , Humanos , Intestino Delgado/química , Intestino Delgado/enzimologia , Isoenzimas/análise , Isoenzimas/biossíntese , Isoenzimas/genética , Rim/química , Rim/enzimologia , Fígado/química , Fígado/enzimologia , Pulmão/química , Pulmão/enzimologia , Masculino , Pessoa de Meia-Idade , Sulfotransferases/genética , Distribuição Tecidual/fisiologia , Adulto Jovem
11.
Biochem Pharmacol ; 74(2): 352-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17506995

RESUMO

Sulfation, catalysed by members of the cytosolic sulfotransferase (SULT) enzyme family, is important in xenobiotic detoxification and in the biosynthesis and homeostasis of many hormones and neurotransmitters. The major human phenol sulfotransferase SULT1A1 plays a key role in chemical defence, is widely expressed in the body and is subject to a common polymorphism that results in reduced protein levels. Study of these enzymes in vitro requires robust probe substrates, and we have previously shown measurement of activity with the widely used SULT1A1 substrate, 4-nitrophenol, does not accurately reflect protein expression. Additionally, the high degree of substrate inhibition observed with this compound further reduces its value as a probe for SULT1A1. Here we show that 2-aminophenol is a more suitable probe substrate for quantifying SULT1A1 activity in human liver. This compound is sulfated at a high rate (V(max) with purified recombinant SULT1A1=121nmol/(minmg) and shows strong affinity for the enzyme (K(m) with purified recombinant SULT1A1=9microM) and, importantly, is a very poor substrate for the other major SULT1 enzyme expressed in liver, SULT1B1 (with V(max) and K(m) values of 17nmol/(minmg) and 114microM, respectively). Experiments with purified recombinant human SULTs and a panel of 28 human liver cytosols demonstrated that 2-aminophenol shows limited substrate inhibition with SULT1A1, and V(max) values measured in liver cytosols correlated strongly with SULT1A1 enzyme protein levels measured by a quantitative immunoblot method. We therefore suggest that 2-aminophenol is a suitable substrate to use for quantifying SULT1A1 enzyme activity.


Assuntos
Aminofenóis/metabolismo , Arilsulfotransferase/fisiologia , Fígado/enzimologia , Citosol/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...